Ubigene has modified over 5000 genes from more than 200 cell lines with our exclusive innovation CRISPR-U™ technology. At the same time, we already provide customers with high quality gene-editing tools for cell or animal research worldwide.
With 12 years of experience, Ubigene has exclusively innovated and developed 6 product lines, fullfilling all kinds of needs from researchers. Experiment process simplified, efficiency improved, achieving our aim of 'Make genome editing easier'!
Our Solution Specialists will contact you within 2 business days. Of course, you can also tell us when you would like to be contacted:
Search
Email
Other
Recommendations from others
Human immune cells produced in a dish in world first
One day the advance could lead to a patient's own skin cells being used to produce new cells for cancer immunotherapy or to test autoimmune disease interventions.
The group, led by Professors Ed Stanley and Andrew Elefanty, from the Murdoch Children's Research Institute in Melbourne, Australia, said the work has added definitive evidence about how the body's earliest immune cells are formed.
These lymphocytes are produced by cells which form the embryo's first organs rather than the blood-producing stem cells that sit inside the body's bone marrow.
The research combined two powerful laboratory techniques, genetic engineering and a novel way of growing stem cells, to make the breakthrough, which has been published in the journal Nature Cell Biology.
First, the team engineered pluripotent stem cells to glow green when a specific protein marker of early immune cells, RAG1, was switched on. RAG1 is responsible for creating the immune response to infections and vaccines.
Next, the team isolated the glowing green RAG1-positive cells and showed that they could also form multiple immune cell types, including cells required for shaping the development of the whole immune system.
"We think these early cells might be important for the correct maturation of the thymus, the organ that acts as a nursery for T-cells" said Professor Stanley.
"These RAG1 cells are like the painters and decorators who set up that nursery, making it a safe and cozy environment for later-born immune cells," he said.
Professor Elefanty said, "Although a clinical application is likely still years away, we can use this new knowledge to test ideas about how diseases like childhood leukemia and type 1 diabetes develop. Understanding more about the steps these cells go through, and how we can more efficiently nudge them down a desired pathway, is going to be crucial to that process."
Story Source:
Materials provided by Murdoch Childrens Research Institute. Note: Content may be edited for style and length.
Journal Reference:
Ali Motazedian, Freya F. Bruveris, Santhosh V. Kumar, Jacqueline V. Schiesser, Tyrone Chen, Elizabeth S. Ng, Ann P. Chidgey, Christine A. Wells, Andrew G. Elefanty, Edouard G. Stanley. Multipotent RAG1 progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids. Nature Cell Biology, 2020; 22 (1): 60 DOI: 10.1038/s41556-019-0445-8