Site-directed mutagenesis in wheat via haploid induction by maize

Location:Home > About Us > Blogs >

Site-directed mutagenesis in wheat via haploid induction by maize

A new study, which has recently been published in the Plant Biotechnology Journal, demonstrates how site-directed mutagenesis can be achieved in virtually any wheat germplasm of choice by intergeneric pollination of wheat with cas9/guide-RNA (gRNA)-transgenic maize.





For exemplification of this principle, new allelic variants were generated for the wheat genes BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and SEMIDWARF 1 (SD1) which are involved in the regulation of the agronomically important trait plant height.


In total, 15 independent target gene-specific mutants were identified out of 174 wheat plants. Mutants were obtained in six wheat backgrounds, including the three spring-type common wheats BW, W5 and K15, the winter-type bread wheat S96, as well as the two durum wheats D6 and D7. Mutations were found in all three genomic target motifs addressed. None of the 15 mutants carried any transgene. The efficiency in mutant plant formation ranged from 3.6% to 50%.


"The major advances achieved in the present study include (1) much reduced genotype dependence, (2) the opportunity of creating a whole variety of wheat plants carrying different allelic variants of the target gene using just one cas9/gRNA-transgenic maize plant as well as (3) the production of target gene-specific mutants that are instantly true-breeding and generally free of any transgenes," says Dr. Nagaveni Budhagatapalli who played a key role in the study conducted at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben.


However, there is still room for increasing the efficiency of this approach, e.g. by stronger Cas9 and gRNA expression at the relevant timepoint or by the development of improved protocols for in planta production of doubled haploids.



Story Source:

Materials provided by Leibniz Institute of Plant Genetics and Crop Plant ResearchNote: Content may be edited for style and length.


Ubigene Biosciences is co-founded by biological academics and elites from China, the United States, and France. We are located in Guangzhou Science City, which serves as a global center for high technology and innovation. Ubigene Biosciences has 1000㎡ office areas and laboratories, involving genome editing, cell biology technology, and zebrafish research. We provide products and services for plasmids, viruses, cells, and zebrafish. We aim to provide customers with better gene-editing tools for cell or animal research.

We developed CRISPR-U™ and CRISPR-B™(based on CRISPR/Cas9 technology) which is more efficient than general CRISPR/Cas9 in double-strand breaking, CRISPR-U™ and CRISPR-B™ can greatly improve the efficiency of homologous recombination, easily achieve knockout (KO), point mutation (PM) and knockin (KI) in vitro and in vivo. 

Genome Editing Platform
——Focusing on the Application of CRISPR-U™ and CRISPR-B™ Gene Editing Technology
1. Provides various types of gene-editing vectors for different species.
2. Provides different virus packaging services, including lentiviruses, adenoviruses and adeno-associated viruses.3. Provides high-quality services for gene knockout, point mutation and knockin cell lines

Cell Biology Platform
——Focusing on primary cell
1. Provides over 400 types of primary cells.
2. Provides culture strategies and related products for different cell types.3. Provides cell biology-related services such as cell isolation, extraction and validation.